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Introduction

The studies of dynamics inherent in control
systems which incorporate sampled data elements
such as extrapolators, keys, memory elements, etc.
are usually reduced to the analysis of difference
equations. However, this approach tends to disre-
gard the inevitable small desynchronization of
times when sampled elements are connected. In
some systems this desynchronization does not in-
fluence the stability; otheres may be destabilized
by any infinitesimal desynchronization; finally,
some unstable synchronized systems can become
asymptotically stable following the introduction of
any infinitesimal desynchronization. These facts
account for many phenomena observed in the
engineering practice that looked enigmatic when
the mathematical models ignored small desynchro-
nization. In designing the controllers the stability
can be achieved by introduction of lags into the
system.

The article consists of three sections. Section 1
contains formulations of basic results in the stabil-
ity theory of linear desynchronized systems. Sec-
tion 2 is a discussion of some ways to extend the
results. Section 3 provides examples.

All the assertions are given without proof. The
proofs will be published in Avtomatika i Tele-
mekhanika in 1983-1984.

1. Basic results

Systems W are studied whose dynamics in con-
tinuous time are described by the equations

i
EAL )= Y i (Tr) =10 (1)
J=1

Every variable x, is either a scalar or a vector of a
dimension d,. The function x,(¢) over every inter-
val "<t < T"*' of time variation between the
instances 7" and T;"*' takes on a constant value.
In the case of scalar variables the symbol a,;
denotes numbers and in the case of vector varia-
bles it denotes rectangular or square matrices of
associated dimensions.

1.1. Synchronized systems

Below A denotes a matrix with elements a;,
(which can be matrix blocks), the order of the
matrix 4 is d, +d,+ --- + d,. The vector-func-
tion {x,(¢), x,(1),...,x5(1)} is denoted as x(1).
The spectral radius of the square matrix B (i.e. the
largest magnitude of its eigenvalues) is denoted by
r(B).

The system (1.1) is referred to as synchronized
if T'=17y = --- =T} for every n. The dynamics
of the synchronized system (1.1) is described by a
vector-valued difference equation

xn+‘l :Axn, (12)

where x"=x(T") and T"=T/(=T"="-- =
T). Consequently, by virtue of the standard theo-
rems [1], a synchronized system is asymptotically
stable iff r(A4) < 1.

The system (1.1) is referred to as desynchro-
nized if it is not synchronized. If the system (1.1) is
synchronized then it is usually assumed that 7," =
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nh(i=1,...,N)where h > 0. If 7" = nh + 1, where
not all the numbers 7, are equal, then the system
(1.1) is referred to as phase-desynchronized and
the numbers 7. as phase shifts. If T, =n(h+86,)
where not all §, are equal, then the system (1.1) is
referred to as frequency-desynchronized and the
numbers 8, as frequency shifts.

1.2. Systems insensitive to desynchronizations

The system (1.1) is referred to as regular if
T" — oo for each fixed i =1, 2,...,N. The class of
regular systems is very wide, it includes synchro-
nized systems and phase- and frequency-desyn-
chronized systems.

Theorem 1. Let the system (1.1) be regular, the
matrix A symmetrical, and r(A) < 1. Then the sys-
tem (1.1) is asymptotically stable.

Let us denote | 4| the matrix whose numerical
elements are equal to the absolute value of the
associated elements of the matrix 4.

Theorem 2. Let the system (1.1) be regular and
r(|A))<1. Then the system (1.1) is asymptotically
stable.

In the conditions of Theorem 1 and 2 the
system (1.1) is asymptotically stable no matter
whether it is synchronized or desynchronized; the
system (1.1) is asymptotically stable with large as
well as small differences of switching times. Ef-
ficiency of Theorems 1 and 2 is made stronger by
the possibility to apply various well-known meth-
ods to estimate the spectral radii [1,2] rather then
to solve the associated characteristic equations.
For example, if A is numerical matrix then the
inequality r(|A[) <1 is certainly true if one of the
following inequalities holds:

max Z|au| =1, Zafj <1.
S ij

(1.3)

In one important case Theorem 2 can be in-
verted.

max Z|a,.j.| <1,
i ;
i

Theorem 3. Let A be a numerical matrix and a,; = 0.

Let the regular system (1.1) be asymptotically stable.
Then r(A) < 1.

1.3. Phase desynchronization

Denote by 4,; , where 1 <i; <i,<-.-- <i,
< N a matrix which is obtained from an identity
(numerical or block) matrix by replacing rows
enumerated as i, i,,...,i, by the associated rows
of the matrix 4. For instance,

I 0 ... 0 .. 0

0 i aiw O s D
A=

L I N L T

0 0 .. 0 N |

Let us assume at this point that the system (1.1)
is phase-desynchromized. Let 1, < 7, < ... < 7 this
positioning of the numbers 7, can always be
achicved by changing the enumeration of the com-
ponents in (1.1).

Theorem 4. Let the system (1.1) be phase-desyn-
chronized and 0 € 7, <7, < -+« <7y < h. Then the
system (1.1) is asymprotically stable iff r(C)<1
where

C=AyAy_ - A, (1.4)

If r(C)Y=1 and the order and multiplicity of every
eigenvalue of the matrix (1.4) on the circumference
|A| =1 ecoincide, then the system (1.1) is neutrally
stable. In the remaining cases the system (1.1) is
unstable.

If some of the phase shifts 7, coincide, then in
constructing the matrix (1.4) every product 4,, , , -
...*A,, that is associated with a group of identical
shifts (7,1 <%, =7T,015 ** =T, 0 <Toige1)
must be replaced by one matrix 4,, ,..,. Fol-
lowing this all assertions of Theorem 4 remain
valid,

In Theorem 4 the values of phase shifts are
unimportant, only their sequence being essential.

In a general case the matrix C is different from
the matrix 4. What is important is that either can
be stable or unstable independently of the other
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(see Example 3.3). From this remark and Theorem
4 follows the desirability of artificially introduced
phase shifts in some cases.

The spectrum of the matrix (1.4) can be in-
vestigated without constructing the matrix.

Theorem 5. Let a,; be numbers. Let 0 < 1) <1, <
c.. <7y <h. Then the eigenvalues of the mairix
(1.4) coincide with the roots of the algebraical equa-
tion

ap,—A ap N
det| Aay, ay—A an =0. (1.5)
Aay, Aay, Ayy—A

If some of the shifts 7. coincide (this includes
situations where the elements a, ; are matrix blocks),
then in (1.5) only those subdiagonal elements a,,
are multiplied by A whose subscripts i and ; satisfy
the condition 7, # 7.

1.4. Frequency desynchronization

Let us assume that the system (1.1) is
frequency-desynchronized. We are interested only
in those cases where Theorems 1 or 2 cannot be
applied. Let

hy=h+8,hy=h+8y,....hy=h+8,. (1.6)

If the periods (1.6) are commensurable, then a
minimal #* > 0 can be found which 1s multiple of
all &;; and then a matrix C* of transition from the
initial states x(0) to the states x(h*)= C~x(0) can
be written. In terms of the properties of the matrix
C* assertions on stability of the system (1.1) anal-
ogous with Theorem 4 are easily formulated. We
are unaware of the existence of any simple (akin
with Theorem 5) rules for computation of the
eigenvalues of the matrix C* directly from the
matrix A, actual construction of the matrix C*
would be unwieldy, as a rule. Furthermore, the
above reasoning is inapplicable if some of the
periods (1.6) are not commensurable.

Let us choose the number H > 0 and denote by
D,( H) a matrix of transition from the states x(nH )
to the states x(nH + H)= D (H)x(nH). In the
matrix sequence D (H) there are only a finite

number F|, F,,...,F, of different matrices. Let
p(Jj, k) be the number of matrices in the totality
D,(H)....,D,(H) which coincide with F,. There
exist the limits

py=lm k7 'u(j, k), j=1,...,m, (1.7)
k—oc
moreover, p, +p,+ -++ +p_=1. For every j =1,

2,...,m the number p, can be treated as the mean
frequency of the matrix F; occurring in the matrix
sequence D, (H). With small N the numbers (1.7)
can be easily computed or estimated.

Introduce the notation

q(H) =|IF||IP BN - - - || F )P, (1.8)
d(H)=|det Fy|P'|det Fy|? - - - [det F,[P».  (1.9)

Formula (1.9) determines the value of d( H) in the
case when all the numbers det F; are nonzero. If at

least one of them vanishes, then let us make d( H)
= 0.

Theorem 6. If g(H) <1, then the system (1.1) is
asymptotically stable; if d(H)> 1, then it is unsta-
ble.

The value of g( H) does not increase with multi-
plication of H: g(nH)< g(H). Therefore, if in
verifying the condition of Theorem 6 the value of
qg(H) with some H is found to exceed 1, then H
can be multiplied by an integer and then the
condition of the theorem can be verified with this
new value of H. It should be borne in mind,
however, that with H or N increasing, the number
of matrices F, rapidly grows. Therefore, Theorem 6
is sufficiently active only with small H and N. An
example of using Theorem 6 is given in Example
34.

The value of d( H) is in fact independent of H.
Therefore the verification of the condition d( H) >
1 for a single value of H would be sufficient.

Let Gy,...,Gy, denote all the products 4, 4,

- A, where (i}, i,,...,iy) are permutation of

i

the numbers (1, 2,...,N).

Theorem 7. If ||G4]|: ..--|Gxill <1, then for all
sufficiently small 8, and incommensurable in totality
periods (1.6) the system (1.1) is asymptotically sta-
ble. If det A+ 0 and |det a,q|-|det apy|* -~ -
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|det ayn| > 1, then for all sufficiently small 8, and
incommensurable in totality periods (1.6) the system
(1.1) is unstable.

1.5. Two-component system

A system
x;(nh+h)=a;x,(nh)+a,x,(nh),
x,[(n+1)(h+8)] =a,,x,(nh+ns)

+a,,x(nh+nd) (1.10)

will be referred to as two-compenent. The dimen-
sions of the vectors x; and x, in the system (1.10)
are equal to d, and d,, respectively.

To study the system (1.10), let us construct a
sequence of five-tuples

{(\. S, T,,8., T}, i=0,1, ... (1.11)

Where A, are numbers in the interval [0,1] and S,,
S T are square matrices of the order d, + d,.

Let
h a a
—— 50:( 11 12).
2h+8° 0 I
_ (1 0 5 _ 2 _
TD—(% au)' 5=, T=1

If the five-tuple (A, S, 7., S,, 7;} has been ob-
tained, then for 0 <A, < 3 1 t us set

Apr=2+n,— A7, S =TS,
Ta=TSm S =T3S,

T =TSy (1.12)
where n;= —[1 —A;']~1 (here [»] is the greatest

integer not exceeding »). For 1 <X, <1 let

g .
KJ-4_1=( —?\j) ~iy=T1y Sy =T
+ no+1 S — T
7}._'_1:?};4‘ S}‘ SJ_+]—?;. _S;,
By = TVES (113)

where n,= —[1-(1-A,)7']-1
Associate every five-tuple (1.11) with the num-
ber

R, =S M) (1.14)

The construction of the sequence (1.11) is
terminated either if for some i one of the equalities
A;=0orA,=1holdsorif 0 <A, <1 and R, <1.

Theorem 8. Ler det A, detay;, deta,, #0. The
system (1.10) is asymptotically stable iff for some i
the five-tuple (1.11) has one of the following three
properties: either X, = 0 and r(S,)<1,0r A\, =1 and
r(T)ﬁl or0<A,<land R, <1.

In the cases where A, =0o0r X, =1, the periods h
and h + 8 are commensurable. If A, =0 and r(S,) >
lorA =1 and r(f",-) = 1, then the system (1.10) is
not asymptotically stable.

What is important 1s that the algorithm of
Theorem 8 rapidly determines, as a rule, whether
the system (1.1) is stable. On the other hand, in
computating formulae (1.12) and (1.13) the com-
putation error dramatically increases (see Example
3.5). Thus, for the absolute error 4, of measuring
the quantity A, the estimates are valid

(2+n,) - (24n,_,) 4,24

N (00 L

For the absolute error A% of measuring of the
elements of the matrices S,, 7;, S,, T, the estimate
is true

(14 n;_) A (1.15)

A7 < (2D)i[Mo(2 +”o)] -"[Mi—1(2 +”.‘--1)]4T1v

(1.16)

where M, is the greatest absolute value of the
elements of the matrices S, T, S;, T and D=d, +
d, is the dimension of the system (1 10). Conec-
quently, with A, = 107° by virtue of (1.15) 4, = 2*
+107® and the computation (1.12)—(1.13) makes
no sense even with i = 10.

An example of using Theorem 8 is given in
Example 3.6.

In the case where in (1.10) a,, are numbers and
the frequency shift 8 is small, fairly general condi-
tions for stability or unstability of the system
(1.10) can be obtained directly in terms of ele-
ments of the matrix 4.

Theorem 9. If r(A,A,) <1, then the system (1.10)
is asymptotically stable for every, sufficiently small,
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§+0.1Ifr(A,A4,)> 1 and either
(1.11)

lanaxn|>1, anay;#*anay,

or

lana5,] <1,

(ay, — ‘122)2 + ;’-’12‘721(1 +ay)(1+ay)+#0,
“13“2'1)2_(“'11 +ay)

><(a“ +ay + alzam)

(2a,,a,,—

3
a13a5) +apayn(a, +ay) #0,
(1.12)

X(2apa;, —

holds, then the system (1.10) is unstable for every,
sufficiently small, 8 + Q.

It follows from Theorem 9 (see Example 3.3)
that the asymptotically stable synchronized system
by introducing the frequency shifts as small as
desired can become unstable and an unstable sys-
tem can become asymptotically stable. As a result,
introduction of artificial frequency shifts can serve
a useful purpose in some cases.

2. Remarks

Remark 2.1. The dynamics of the system W de-
scribed by the equations

‘x.r'(?:"-‘—l) E au j(T” (2'1)
JF=1

where

x;(t)=const for T"<t< T, (2.2)

can be described in equivalent terms

N
xi(j:'”*‘o): E ar; _;(T” 0)! (23)
=1
where
x,(t)=const forT"<t< T "' (2.4)

Here x,(T}" + 0) and x (7;" — 0) denote right-hand
and left-hand limits, respectively, at the point 7}".
In (2.3) the value of the function x;(¢) at switching
times is unimportant,

A situation is described in Example 3.1 which
leads to equations (2.1), (2.2). The dynamics of the
system in Example 3.2 is described by the equa-
tions (2.1) where

x(f)=const for "< i< T *!, (2.5)

Equations (2.1), (2.5) are not generally equiva-
lent with (2.1), (2.2). Consequently, for (2.1), (2.4)
the above assertions need a modification to remain
valid.

We do not know whether the studies of the
system (2.1), (2.5) can be reduced to those of a
system of the form (2.1), (2.2). One particular case
where this reduction is possible is described below.

The system (2.1), (2.5) will be said to be com-
pletely desynchronized if no two of its components
switch simultaneously.

Let the system (2.1), (2.5) be completely desyn-
chronized. Assume that for every i=1, 2,...,N
and every n

(1) =x,(T7) for Tr=t <r< Ty, (26)

z(t)=x(T") forT"<t< T/, (2.7)

Then

2(T) = + X a,2,(T"), (2.8)
jHi

2 (1) = (1), (2.9)

Consequently, the study of a completely desyn-
chronized system (2.1), (2.5) is reducible to that of
a system (2.6)—(2.9) which 1s a system of the form
(2.1), (2.2).

Remark 2.2. Consider a linear system W whose
dynamics in continuous time are described by
equations, more general than (1.1),

w1 )= Zau X (T") +u(T), (2.10)

which are different from (1.1) in that exogenous
signals u,(r) are present.

Assume that for constant exogenous signals
u,(1)=u} the system (2.10) has an equilibrium
state x,(¢) = x*. This state is asymptotically stable
(neutrally stable, unstable) iff so is the associated
uniform system (1.1).
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Remark 2.3. Let us consider a nonlinear system W
whose dynamics are described in continuous time
by the equations

2 (T = L (TP o (0]

where x, are scalar variables. Let x(1) = x* be the
equilibrium state of the system (2.11), ie.
fi(x¥,...,x%)=x¥ To study the stability of this
state let us build a first approximation system:

(2.11)

i
2 (T*) = X £,5(T7),
j=1

where f, . = (3f,/9x;)(x{,...,x}).
The conventional theorems on stability in the
first approximation are valid.

3. Examples

Example 3.1. Let us consider a multi-processor
system W which consists of N processors Py,
P,,..., P, which exchange data through the buffer
B (see Fig. 1). Assume that the working cycle of
every processor P, starts at specified times 7T},
T72,...,T7, ... and consists of three phases.

Phase 1. Reception of the contents of the buffer
B, the vector x = { Xy, X5,....Xy }.

Phase 2. Computation of the new value of the
ith component of the vector x according to the
rule

X oy =AnXy + oo +ayxy+u (7). (3.1)

i iew

Phase 3. Recording the resultant new value

X, .ow 10 the appropriate location in the buffer B.
S X —
U1 p e ] B
s e Nk X1 new
X
P S B
2 %2 new 5
L x= | X2
....................... ;:N,"
U — X
N
PN XN new
E— - PO
Fig. 1.

Let the duration of all the three phases in each
processor be small in comparison with the time
T"*!'— T," between two subsequent start ups of
the processors, Fig. 2(a). Then the dynamics of the
multi-processor system W are described by equa-
tions (2.1), (2.2) (and with u,(r) = 0, by equations
(1.1)). '

Example 3.2. Let in the system W of Example 3.1
the duration of the first and second phases in each
processor be small in comparison with that of the
interval between two subsequent start ups of the
Processor.

Let the computation of the new value x, . by
formula (3.1) be slow in that the second phase
takes up almost the entire interval between two
subsequent start ups of the processor, Fig. 2(b).
Then the dynamics of the system W are described
by equations (2.1), (2.5).

Example 3.3. Table 1 represents the value of the
spectral radii »(A) and r( A4, 4,) of four matrices 4
and associated matrices 4,4, and the results of
checking the conditions (1.18) of Theorem 9.

The data represented in Table 1 shows that by
introducing phase shifts or small frequency shifts

(b}

phase 1 phase 2 phase 3
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Table 1
A —0.5 1.0 =05 -0.6 -0.5 -0.0 -0.5 20
—-05 ~05 -0.5 -0.5 -0.5 -0.5 -0.5 =05
A, A, —-0.5 1.0 -0.5 -0.6 -0.5 0.0 -0.5 20
0.25 -1.0 0.25 —-0.2 0.25 -05 0.25 -15
r(A4) 0.87 1.05 0.5 112
r(A,Ay) 131 0.5 0.5 1.87
Condition
(1.18) true? yes - - yes
Synchr.
system stable unstable stable unstable
Desynchr.
system unstable stable stable unstable
an asymptotically stable synchronized system can 0.104 0.896 0.064
become unstable and an unstable synchronized Fa=A,4,4,4; = 0.118 0.082 -0.066
system can become asymptotically stable. 0.400 —0.400 —0.100
Example 3.4. Consider a three-dimensional system I ¥ell=1.064;
(1.1) with the matrix —0.050 0.538 0.038
Fi=AA4,4;=| —0.240 0.440 -—0.040|,"
06 04 -04 0.400 —0.400 —0.100
-04 0.6 04]. (3.2)
04 —04 —01 I15li = 0.900;
Let the system (1.1) with the matrix (3.2) be Fy= A, 4,4, 4, gi;‘;’ gggg gg%z
frequency-desynchronized, i.e. T = nh,, T)" = nh, - o o
—0.400 —0.100
and Ty = nh; where
Il £6]l = 0.900;
h t] = =
=1, hy=v2, h,=y3. (3.3) 0.098 0582  0.042
Let us study the system (1.1), (3.2) with the aid F,=4,4,4,4;=| -0.016 0216 —0.056 |,
of Theorem 6. Let us choose H = h,= V3. Then 0400 -0.400 —0.100
there are 10 matrices F: | F5]| = 0.900;
0.040 0.640 —0.040 0.098 0.582 0.042
Fi=A,44=| -0.09 —0056 0.216 Fy=A, 4,4, 4,4,= | 0111 —0263 —0.090
0.400 —0.400 —0.100 0.400 —0.400 —0.100
l£1]] = 0.900; || Fyll = 0.900;
0.440 0.560 0.040 —-0.050 0.538 0.038
Fy=A4,4,4;=| -0.016 0216 —0.056 |, Fo=A, 4,4 A, A4, = 0036 -0111 —-0.079
0.400 —0.400 -—0.100 0.400 —0.400 =-0.100

Il = 1.040;
0.344 0.336 0.024
0.400 —-0.400 —0.100
I1F1l = 0.900;

Il Byl = 0.900;

Fio :A1A2A1A2A3 =

Il Fioll = 0.900.

—0.002 0.349 0.025
—0.122 -0.030 -0.074
0400 -0.400 -0.100
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F0=A2A1A1A2A3

sl T N

1+1>x]>x

>0
x1+2>\/§,x2+2\5>\/§2

Fig. 3.

Here the norm of the matrix F is generated by the
norm ||x|| = max{|x,], |x,|, [x;]} in the space R’
and, consequently, is dictated by the formula || F||
=max,X |f |

What remains to do is to find the mean fre-
quencies p, of finding matrices F,. This can be
done directly by using formulae (1.7). There is,
however, an alternative technique.

Every matrix F, is uniquely represented in the
form F, = Q,Q, - - - Q, where each @, is one of the
matrices 4,, A,, A;, A. Associate matrix F; that
does not have a matrix 4 as a comultiplier with
inequality system. The first on the right matrix of
the form A, is associated with the symbol x,, the
second on the right matrix of the form A4, 1s
associated with the symbol x, + h,, Fig. 3, etc. The
first on the right matrix of the form A, is associ-
ated with the symbol x,, the second on the right
matrix of the form 4, is associated with the sym-
bol x, + h,, etc. The resultant sequence of sym-
bols will be arranged as the associated matrices are
arranged in the expression for F,. Insert between
two neighbouring symbols x; + kh, or x, + /h, the
inequality sign ‘>’., Add on the right of the re-
sultant chain of inequalities the inequality ‘> O’
and on the left, the inequality ‘H >, Fig. 3.

Add two more inequalities: x; +m h; > H and
X, + myh, > H where m, (j=1, 2) is the number
of matrices of the form A4 in the expression for F.

The resultant inequality set will be referred to

as the determining set of relations for the matrix
F.

L
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%o

V3 O— —
o, /a9 |9,

1y

5 | &4
V3-Y2 0y 7
529 ﬂa Xy
10
—‘—o/io—_ I
V2.1 V31 1
Fig. 4.

The determining set of relations for the matrix
identifies in the rectangle 0 < x; <h,;, 0 <x, <h,
a certain region £2;, Fig. 4.

Lemma 3.1. If the numbers h,, h, and H=h,
(h3>hy, h,) are incommensurable in totality, then
p,=hi'h3" mes Q, for matrices F, which have a
determining set of relations and p, =0 for matrices
F, which have not a determining set of relations.

In a similar way a determining set of relations is
obtained when H # h,y but H > hy, h,, h,. Here
every matrix A, must also be associated with a
symbol x, + kh,. In this case the regions {2, are
considered in a parallelepiped 0 < x; <h,;, 0 <x,
<h,, 0<x;<h; and the numbers p, are de-
termined by the equalities p, = (h,h,h;) " mes £2,.

The described way of determining p, is also
applicable to systems whose dimension is higher
than three. It is needed only that the periods h,,
h,,...,h, are incommensurable in totality.

Using Lemma 3.1. and Fig. 4. we have p, =0,
Py =p;=0104, p,=p,=0.061, p,=0.060, p,=

Table 2

i 0 1 2 3 4

AT 0.414214 0.585786 0.414214 0.585786 0.414214
R. 0.414214 0.585787 0.414216 0.585798 0.414282
i 5 6 7 8 9

AY 0.585786 0.414214 0.585786 0.414214 0.585786
A, 0.586187 0.416553 0.599342 0.495896 0.983449
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Table 3
i A 1, S, T 1S:Il Iz R,
0 0.41 1 —0.50 1.00 1.00 0.00 1.50 1.00 1.27
0.00 1.00 —0.50 —-0.50
1 0.59 1 0.25 0.50 —0.50 1.00 0.88 1.50 1.20
—-0.13 —-0.75 0.25 —-1.00
2 0.41 1 —0.25 —1.00 0.31 1.37 1.25 1.69 1.42
0.19 0.88 —0.25 -1.12
3 0.59 1 0.12 0.60 0.18 0.89 0.72 1.07 0.91
-0.10 —0.49 ~0.15 -0.73
0.416, p; = p,, = 0.036, ;:; =0,093. Hence g(H)= and switching periods
0.923. Consequently, by virtue of Theorem 6 the h=1, h+8=2. (3.5)

system (1.1), (3.2), (3.3) is asymptoticaily stable.

Example 3.5. Let A, = \/5 — 1. In the second row
of Table 2 the theoretical values of the numbers A,
obtained by formulae (1.12), (1.13) are given with
an accuracy of six significant digits. These theoret-
ical values A% of A, have the form A%, =2 —1
and A%,,,=2+ V2. The third row shows the
values of A; obtained in computation with the
single precision by HP-2100A computer.

Example 3.6. Let us take up a frequency-desyn-
chronized two-dimensional system (1.10) with the
matrix

(

1.0
—-0.5

—0.5

4 —035

(3.4)

The results of the computation by formulae
(1.12) and (1.13) are summarized in the Table 3.

By virtue of Theorem 8 the system (1.10), (3.4),
(3.5) is asymptotically stable. It is interesting to
note that the synchronized system (1.10) with the
matrix (3.4) is asymptotically stable. With small
frequency shifts it becomes unstable (see Example
3.3), and with a large frequency shift (h=1, h + §
=2 it again becomes asymptotically stable.

References

[1] F.R. Gantmakher, The Theory of Matrices (Nauka, Moscow,
1967) (in Russian).

- {2] M.A. Krasnosel'skii, G.M. Vainicko et al, Approximate

Solution of Operator Equations (Nauka, Moscow, 1969) (in
Russian).



